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Abstract  

Background 

A genome-wide comparative analysis of human and mouse gene expression 

patterns was performed in order to evaluate the evolutionary divergence of 

mammalian gene expression.  Tissue-specific expression profiles were analyzed for 

9,105 human-mouse orthologous gene pairs across 28 tissues.  Expression profiles 

were resolved into species-specific coexpression networks, and the topological 

properties of the networks were compared between species.   

Results 

At the global level, the topological properties of the human and mouse gene 

coexpression networks are, essentially, identical.  For instance, both networks have 

topologies with small-world and scale-free properties as well as closely similar 

average node degrees, clustering coefficients, and path lengths.  However, the human 

and mouse coexpression networks are highly divergent at the local level: only a small 

fraction (<10%) of coexpressed gene pair relationships are conserved between the two 

species.  A series of controls for experimental and biological variance show that most 

of this divergence does not result from experimental noise.  We further show that, 

while the expression divergence between species is genuinely rapid, expression does 

not evolve free from selective (functional) constraint.  Indeed, the coexpression 

networks analyzed here are demonstrably functionally coherent as indicated by the 

functional similarity of coexpressed gene pairs, and this pattern is most pronounced in 

the conserved human-mouse intersection network.  Numerous dense network clusters 

show evidence of dedicated functions, such as spermatogenesis and immune response, 
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that are clearly consistent with the coherence of the expression patterns of their 

constituent gene members.   

Conclusions 

The dissonance between global versus local network divergence suggests that 

the interspecies similarity of the global network properties is of limited biological 

significance, at best, and that the biologically relevant aspects of the architectures of 

gene coexpression are specific and particular, rather than universal. Nevertheless, 

there is substantial evolutionary conservation of the local network structure which is 

compatible with the notion that gene coexpression networks are subject to purifying 

selection. 
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Background  

The amplitude, timing, and pattern of gene expression have important 

phenotypic consequences, and the potential evolutionary significance of changes in 

the regulation and expression of genes has long been recognized [1-3].  In the last few 

years, high-throughput gene expression data sets from related species have 

accumulated, to the extent that it has become possible to study the divergence of 

expression in a systematic way at the genome-scale.   

Initial efforts at the comparative study of gene expression divergence have 

yielded some interesting and unexpected results.  For instance, it has been shown that 

the level and pattern of mammalian gene expression can evolve in a way that is both 

rapid and apparently unconnected to the level of functional constraint on gene 

sequences [4, 5].  This led to the counter-intuitive suggestion that gene expression 

may evolve completely free of selective constraint, in other words, purely neutrally.  

Subsequent studies have refined the neutral view on the evolution of gene expression 

by demonstrating that, although selection does, in fact, constrain expression 

divergence, much of the observed change in expression between species may 

nevertheless be effectively neutral [6, 7].  The potential adaptive significance of some 

gene expression changes has also been posited [6].  Several other recent studies have 

shown how patterns of gene expression, and entire regulatory networks, can quickly 

respond to environmental cues and substantially reorganize themselves over the 

course of evolution.  For instance, the architecture of yeast gene regulatory networks 

has been shown to change dramatically in response to environmental stimuli [8], and 

gene expression patterns were found to diverge rapidly after gene duplication in yeast 
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[9] and humans [10].  Prokaryotic genomes, too, show evidence of rapid, whole-sale 

reorganization of gene regulatory networks [11].  

Given the phenotypic relevance of gene expression patterns, the apparent 

evolutionary lability of expression suggests that it might represent an ideal substrate 

on which natural selection could act to drive the functional divergence between 

evolutionary lineages.  Indeed, comparative studies of gene expression have also 

uncovered intriguing connections between expression divergence and gene function.  

For instance, it has been shown that physically interacting proteins tend to be encoded 

by coexpressed genes [12, 13], and that the expression levels of interacting proteins 

show coordinated changes across species [14].  From a broader perspective, it has 

been demonstrated that functionally related genes are preferentially linked in 

coexpression networks, and this was taken to justify the so-called ‘guilt by 

association’ heuristic whereby expression patterns are used to inform functional 

annotation of uncharacterized genes [15].  In a very specific example of how 

expression changes can lead to phenotypic divergence, the expression changes in 

yeast that facilitated the emergence of anaerobic metabolism have been identified and 

shown to be due to the evolution of a specific cis-regulatory sequence motif [16].      

 For the study presented here, we performed a comparative analysis of human-

mouse gene expression patterns to assess the extent of expression divergence between 

the two species and to explore the connections between the evolution of gene 

expression and function.  We employed the Novartis mammalian gene expression 

atlas [17] to compare changes in the relative expression levels between 9,105 

orthologous human-mouse gene pairs across a panel of 28 shared tissues.  Gene 

expression patterns were resolved into species-specific coexpression networks and the 

topological properties of these networks were compared.  The interrogation of 
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coexpression networks allows for the use of a well-developed set of analytical and 

conceptual tools [18-20] and provides an opportunity for the simultaneous comparison 

of evolution at different levels of systemic organization, i.e., global vs. local network 

properties. The results of this comparison indicate that human and mouse co-

expression networks are indistinguishable in terms of their global properties but show 

drastic divergence at the local level.    

Results and Discussion   

Mammalian coexpression networks 

Tissue-specific expression profiles of human-mouse orthologous gene pairs 

were compared in order to evaluate the divergence of mammalian gene expression 

patterns.  A total of 9,105 orthologous gene pairs were considered with respect to their 

expression levels across 28 tissues shared between the two species.  All-against-all 

gene expression profile comparisons for the human and mouse matrices (9,105 × 28) 

were used to generate species-specific coexpression networks (Figure 1a).  For 

coexpression networks, nodes correspond to genes, and edges link two genes from the 

same organism if their expression profiles are considered sufficiently similar (Figure 

1b).  A number of different metrics were used to measure the similarity (distance) 

between vectors of tissue-specific expression levels: Euclidean distance, Manhattan 

distance, Jensen-Shannon divergence, dot-product, cosine similarity and Pearson 

correlation coefficient.  Results reported here are for networks constructed using the 

Pearson correlation coefficient (PCC).  The PCC is widely employed for comparison 

of gene expression profiles and reflects similarity between expression patterns in 

terms of the relative expression levels across tissues.  It should be noted that the 

results for the coexpression network analyses are qualitatively similar irrespective of 
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the measure of profile similarity employed.  Results of analyses based on the other 

measures of profile similarity (distance) are presented in the Supplementary 

Information section (see Additional file 1) along with a discussion of the relationships 

among those measures. 

The use of the PCC to build coexpression networks is predicated on the choice 

of a threshold correlation coefficient (r) at, or above which, genes are considered to be 

coexpressed and are thus connected by an edge in the network.  As previously 

reported [21], a series of increasing r-values (0.4-0.9) was evaluated for utility in 

building coexpression networks.  When r –values << 0.7 are used, coexpression 

networks tend to congeal into graphs that are so densely connected as to preclude 

meaningful analysis of their topological properties.  On the other hand, r-value 

thresholds ranging from 0.7-0.9 yield analytically tractable networks and qualitatively 

similar results.  Results for coexpression networks based on an r-value threshold of 

0.7 are reported here since this cutoff gives networks that are unlikely to contain 

many spurious edges but are sufficiently large and dense for robust topological 

analysis.  For the 28-dimensional gene expression profiles evaluated here, an r-value 

of 0.7 corresponds to a highly statistically significant correlation (P=3.4e-5).  

Furthermore, gene expression profiles with r≥0.7 can be visually appreciated to be 

highly similar (Figure 1c). 

Human and mouse coexpression networks were evaluated with respect to a 

number of parameters describing their global topological properties and found to be 

highly similar (Table 1).  The numbers of nodes and edges in each network are 

comparable, with the mouse network showing slighter higher values for both.  The 

average degree (<k>) is the average number of edges per node and gives rough 

approximation of how dense the network is.  The mouse network shows a slightly 
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higher <k> which is consistent with the greater numbers of nodes and edges.  

However, <k> is again similar for both networks and rather high.  By way of 

comparison, typical world-wide-web networks have <k>≈7.  The values of <k> 

might not be particularly relevant because, as will be shown below, the degree 

distributions are highly skewed. 

A more refined notion of network density is given by the average clustering 

coefficient (<C>).  The clustering coefficient C of a node i is defined as the fraction 

of the pairs of neighbors of node i that are linked to each other: Ci=2ni/ki(ki-1), where 

ni is the number of observed links connecting the ki neighbors of node i and ki(ki-1)/2 

is the total number of possible links.  The average clustering coefficient (<C>) is the 

mean of this value for all nodes with at least two neighbors, and for both the human 

and mouse networks <C>≈0.4 (Table 1).  For networks of this size, these <C> values 

are considered to be quite high.  By way of comparison, for randomly generated 

networks with the same number of edges and same degree (k) sequences, the expected 

<C> is estimated to be 0.0643 for human and 0.0529 for mouse.  The high density of 

the coexpression networks is not necessarily surprising because, as one could 

reasonably expect, co-expression is, largely (but not entirely), transitive.  In other 

words, if gene A is coexpressed with genes B and C, then genes B and C are likely to 

be coexpressed as well.  However, the high observed values of <C> for the human 

and mouse networks do not appear to be due to the transitivity of the PCC similarity 

measure alone.  This is demonstrated by the observation that networks built using the 

PCC measures between randomly permuted gene expression profiles, thus preserving 

some transitivity, also have values of <C> that are far lower than the observed values: 

human=0.0933, mouse=0.1229. 
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The average path length (<l>) is the average shortest path, or the smallest 

number of edges needed to connect two nodes, between any two reachable nodes in 

the network.  Clearly, the co-expression networks exhibit “small world phenomena”: 

on average, any two nodes are separated by only a few edges (Table 1). 

Node degree (k) distributions were also computed for the human and mouse 

coexpression networks (Figure 2a and 2b).  In both cases, the distribution seems to 

follow a power-law, that is, the probability that a randomly chosen node has degree k, 

is α−
∝= kkK ]Pr[  where the parameter α, is the exponent of the power law 

distribution.  While the degree distributions seem to be well approximated by a 

straight line in log-log scale (α=1.13 for the human network and α=1.11 for the 

mouse network by the least squares method), there appears to be an exponential drop-

off in the tail of the distributions.  Thus, the distributions are more appropriately 

described as a fat-tailed, power-law-like distributions rather than strict power-laws.  

Accordingly, evolutionary models that lead to pure power-laws, typically, with α>2, 

such as preferential attachment, would not apply to the evolution of this network.  

Additional details on these distributions are provided in the Supplementary 

Information (see Additional file 1).  Node degree distributions obtained using 

different distance (similarity) measures show similar fat-tailed properties and appear 

to be better approximated by power-laws than those obtained using the PCC (see 

Additional file 1; Supplementary Figure 3).  

It has been shown that analysis of the plot of the clustering coefficient C(k) as 

a function of their degree ki can yield insight to the structure of the network.  In 

particular, it has been reported that the C(k) distribution of networks with hierarchical 

structure follows a power-law, with a high interconnectivity among nodes of low 

degree that decreases as the degree increases [18].  The C(k) distribution of the human 
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and mouse coexpression networks is more or less constant (Figures 3a and 3b) 

implying that these networks, most likely, do not exhibit a hierarchical structure.  

Slightly different trends were observed for the different distance or similarity 

measures (see Additional file 1; Supplementary Figure 4). 

Human-mouse intersection network 

As described above, the human and mouse gene coexpression networks are 

closely similar in terms of their global topological characteristics; they share similar 

node degree (k) distributions and C(k) distributions as well as similar average node 

degrees (<k>), clustering coefficients (<C>) and path lengths (<l>).  We further 

sought to evaluate the similarity between the species-specific coexpression networks 

at a local level.  There is as yet no general method for assessing local network 

similarity (or graph isomorphism).  However, in the case of the human and mouse 

coexpression networks generated here, the use of orthologous gene pairs results in a 

one-to-one mapping between the nodes of the two networks.  In this sense, the 

networks can be considered to be defined over the same set of nodes N, and thus can 

be directly compared by generating an intersection network.  The human-mouse 

intersection network is defined as the network over the set of nodes N where there is a 

link between two nodes i and j if i and j denote two pairs of orthologous genes which 

are connected in both the human and the mouse networks (Figure 4a).  Thus, the 

intersection network captures the coexpressed gene pairs conserved between human 

and mouse.   

The global characteristics of the intersection network are shown in Figures 4b 

and 4c.  The intersection network node degree and C(k) distributions are clearly 

similar to those of the species-specific networks as are the average clustering 
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coefficient (<C>=0.4006) and average path length (<l>=6.89).  The exponent that 

best approximates the power law of the node degree distribution is α=1.34 when a line 

is fitted to the logarithmically binned distribution (see Additional file 1; 

Supplementary Figure 5) and α=1.01 using the maximum likelihood method.  Taken 

together, these findings indicate that the global structure of the species-specific 

coexpression networks is preserved in the intersection network.  However, the most 

striking feature of the intersection network is the small fraction of genes (~29-31%) 

and edges (~7-8%) that are conserved between the human and mouse networks (Table 

2).  Accordingly, the average node degree is far lower (<k>=11.57) in the intersection 

network than it is in each of the species-specific networks. 

Several other factors also point to the local level divergence of the human and 

mouse coexpression networks.  When the degrees (k) of nodes present in both the 

human and mouse networks were arranged into species-specific degree sequence 

vectors, only relatively low, albeit statistically significant (given the large number of 

observations), correlation (r=0.27, P=9e-149) was seen between species.  In other 

words, a highly connected node (hub) in the human coexpression network is not 

especially likely to be a hub in the mouse coexpression network and vice versa.  In 

addition, the human and mouse coexpression r-values for shared edges are not 

correlated at all (r=0.03).  Finally, there is no correlation between the principal 

eigenvector values of the human and mouse networks (r=-0.03), indicating that the 

dense areas of the networks do not overlap.  Thus, whereas the global topological 

properties of the species-specific networks are highly conserved, the local 

architectures that underlie these topologies, in terms of the identities of the 

coexpressed genes pairs, are highly divergent.   
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The low level of conservation seen for the local network structures was 

unexpected, particularly, in light of the close similarity of the global topological 

properties, and suggested substantial divergence of gene expression patterns between 

human and mouse orthologs.  A series of controls were implemented to assess the 

meaning and robustness of these findings (see Additional file 1).  These controls 

included comparison of networks constructed separately from experimental and 

biological replicate data sets, and analysis of network conservation for subsets of the 

data with different experimental variances. The results of these controls indicate that 

the majority of the local divergence between human and mouse coexpression 

networks does not result from experimental noise.  In addition, lowering the PCC 

threshold used to define edges in the coexpression networks does not result in a 

substantial increase in the fraction of edges conserved between species (see 

Additional file 1; Supplementary Figure 9a).   

The high divergence of coexpressed gene pairs between human and mouse 

detected here is consistent with previous studies that have shown substantial 

divergence of the expression profiles for human and mouse orthologs [5, 6, 21, 22].  

Indeed, when the expression profiles were directly compared for the 9,105 human-

mouse orthologous gene pairs studied here, the average PCC, while positive, was 

fairly low and not statistically significant (average PCC=0.22, Student’s t=1.15, 

df=26, P=0.26).   

Functional coherence of gene coexpression networks 

The coexpression networks described here are analytical constructs that are 

intended to capture the complexity of the relationships among thousands of gene 

expression patterns.  Given the significant rapidly evolving (and perhaps neutral) 

component in the evolution of these networks, it is not a trivial question whether or 
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not (and to what extent) coexpressed gene pairs represent coregulated and/or 

functionally interacting genes.  To assess the biological relevance of these networks, 

Gene Ontology (GO) functional annotations were mapped onto the network nodes and 

the functional affinities of linked genes were explored.  The first question addressed 

was whether, and to what extent, coexpressed genes are functionally related.  The 

structure of the GO graph can be exploited to derive measures of functional similarity 

between pairs of genes [23].  Pairwise similarities between biological process terms 

were computed for all pairs of network genes associated with GO annotations, and 

these functional similarity data were then used to cluster genes by the UPGMA 

method.  The resulting lists of genes, ordered by function, were plotted on both axes 

of a matrix containing all pairwise gene expression profile correlations.  When these 

correlations (r-values) are color coded, it allows for a visual inspection of the 

functional relationships, or lack thereof, among coexpressed genes (Figure 5).  The 

functional coherence of the human-specific, mouse-specific, and intersection 

networks is clearly revealed by the off-diagonal block color-structure of plots (Figure 

5a, 5b, and 5c, respectively).  In each of these networks, there are numerous clusters 

of functionally related genes that are demonstrably enriched for coexpressed pairs.  

For comparison, the inset of each plot shows a negative control with genes ordered 

randomly along the matrix axes, and accordingly, no apparent block color-structure 

for the correlation values. 

 In addition to this visual evidence for the functional affinity of coexpressed 

gene pairs, genes linked in the coexpression networks were found to have 

significantly higher GO similarities, on average, than seen for all pairs of genes 

(Table 3).  In addition, statistically significant positive correlations were detected 

between the pairwise coexpression r-values and GO similarity values for all three 
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coexpression networks, indicating that more tightly coexpressed gene pairs tend to be 

more functionally related (Table 4). The correlation was significantly greater for the 

intersection network than for each of the species-specific networks.  

 Based on visual comparison of the off-diagonal color structure of the plots 

shown in Figure 5a,b versus Figure 5c, there appears to be a stronger relationship 

between function and coexpression for the genes that are found in the conserved 

human-mouse intersection network than for the human or mouse networks.  This 

suggests that the expression patterns of gene pairs that are tightly functionally coupled 

are more prominently constrained by purifying selection than those of more loosely 

functionally associated genes.  Statistical comparison of the species-specific versus 

intersection network supports this interpretation.  Pairs of coexpressed genes in the 

intersection network are significantly more functionally similar, on average, than pairs 

of coexpressed genes in the species-specific networks (Table 5).  A cumulative 

frequency distribution of GO similarities between pairs of mammalian genes clearly 

shows that genes linked in the intersection network are more functionally similar than 

genes linked in the species-specific portions of the network, which are in turn more 

similar than all pairs of genes irrespective of their expression patterns (Figure 6).  

Finally, there was a significantly stronger dependence between coexpression and 

function for gene pairs in the intersection network compared to the species-specific 

pairs as indicated by a comparison between expression profile correlations and GO 

functional similarity (Table 6). 

Network clusters and biological function 

The mammalian coexpression networks analyzed here are tightly clustered, as 

indicated by the high average clustering coefficients (Table 1), and display modular, 

albeit not necessarily hierarchical, structure (see Additional file 1; Supplementary 
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Figure 6), (Figure 3 and Figure 4c).  In light of the presence of compact network 

substructures, further functional interrogation was performed by decomposing the 

networks into tightly linked clusters of genes.  The genes in these clusters were then 

evaluated for the presence of statistically overrepresented GO terms, which would 

indicate functional coherence for the respective group of genes.  In a number of cases, 

there are striking relationships between network substructure, gene function and 

coexpression.  A detailed table showing resolved network clusters, overrepresented 

GO terms and gene ids along with their expression patterns is presented online [24].  

Two of the most prevalent functional classes that show clear function-expression 

coherence are genes involved in sexual reproduction and host immune response.  

Examples of two such clusters are shown in Figure 7.  This observation is notable 

because genes of these two functional classes are also prone to evolve under the 

influence of positive, diversifying selection [25, 26].  This is thought to be due to 

sexual selection, in the case of reproduction related genes [27], and to evolutionary 

arms race between hosts and their pathogens for immune response genes [28].  It 

might prove to be the case that changes in gene expression patterns for such genes 

also have pronounced evolutionary significance.  

Consistent with the apparent increased functional coherence of the intersection 

network, the correspondence between network clusters, GO term overrepresentation 

and expression patterns is significantly more pronounced for the conserved 

intersection network than for the human and mouse species-specific networks.  Thus, 

38% of clustered genes from the intersection network mapped to overrepresented GO 

terms compared to 13% of human-specific (χ
2
=85.1, P=2.8e-20) and 18% of mouse-

specific network genes (χ
2
=43.0, P=5.5e-11). 
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Conclusions  

General significance of coexpression network structure 

The global topological properties of the human and mouse gene coexpression 

networks studied here are very similar but the specific architectures that underlie these 

properties are drastically different. In other words, the actual pairs of orthologous 

genes that are found to be coexpressed in the different species are highly divergent, 

although we did detect a substantial conserved component of the co-expression 

network.  The discordance between evolutionary conservation at distinct levels of 

network organization has implications for understanding the general significance of 

the topological properties of networks that represent various complex systems.   

The last few years have seen an explosion of studies on various kinds of 

biological and non-biological networks [29, 30].  A central theme for much of this 

work has been the striking unity of the topological properties of networks representing 

very different complex systems, from biological (e.g., metabolic and protein 

interaction) networks to non-biological ones, such as social interaction networks and 

the world-wide-web.  Almost all these complex networks show evidence of both 

scale-free [31] and small world [32] properties.  In other words, the network node-

degree distributions fit power laws and the diameter of the networks, in terms of the 

average number of links between two nodes in the network, stays small despite 

increases in network size.  These observations have led to the hope that the network 

perspective might ‘revolutionize our view of biology’ [18].  This hope is based on the 

idea that similar network properties are a result of universal laws that govern 

evolution and architecture of complex systems.  As such, the comprehension of these 

basic laws, or simple principles, has the potential to yield unprecedented insight into 
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biological organization and evolution.  Implicit in this stance is the emphasis on a 

systems-level view of biology, which considers ensembles of interacting parts (genes, 

proteins etc.) as opposed to individual actors alone.   

While this optimistic perspective on the biological significance of network 

topologies generated considerable excitement in some quarters, it has not gone 

unchallenged.  A more guarded view of these findings holds that the conserved global 

topological properties of biological networks might actually reveal little or nothing 

about the evolutionary mechanisms that gave rise to them or the particular nature of 

their organization [33-36].  Instead, the relevant architectural features of the 

individual networks could be quite specific and determined by the functional 

constraints on the particular system.  This world-view stresses the anecdotal nature of 

biological sciences, placing the focus back on the nature of the individual genes, 

proteins and/or systems under consideration, and eschews the search for universal 

laws.  Based on the results obtained here, it would seem that mammalian gene 

expression evolves more in accordance with the latter, more cautious view on the 

significance, or lack thereof, of conserved network properties.  In the case of gene 

expression, the highly conserved global network properties belie highly divergent 

local structures that result from the rapid evolution of gene expression patterns.  Thus, 

the architecture of the coexpression networks is highly species-specific and the 

conservation of the global network properties occurs despite, not because of, 

extensive evolutionary changes in gene expression.              

Accordingly, at least in the case of gene expression divergence, the biological 

relevance of the global network topological properties appears questionable.  Of 

course, this does not prevent network analysis from being a powerful approach, 

possibly, the most appropriate one for the quantitative study of complex systems 
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made up of numerous interacting parts.  It is also worth noting that coexpression 

networks built from randomly permuted expression vectors differ from the observed 

networks in not containing high-degree nodes (hubs) and thus cannot be claimed to 

possess scale-free properties with respect to their node degree distributions (data not 

shown).  Thus, some biological features of expression patterns that yield the observed 

node-degree distributions in coexpression networks might exist; identifying such 

features could be important for understanding evolution of gene expression. 

 With regard to the more specific aspects of this work, the conservation of a 

small but substantial component of the coexpression network indicates that, the rapid 

evolution notwithstanding, the network evolves under the constraints of purifying 

selection. The biological significance of the rapid interspecies divergence of 

coexpression networks remains an open problem [4-6, 21, 37, 38]. It is yet unclear 

how much of this divergence is neutral, biologically irrelevant noise and how much is 

functional divergence driven by positive selection and defining, in part, salient 

differences in the biology of the respective organisms.  Addressing these questions is 

an important goal for future network studies. 

Methods 

Orthologous gene expression 

Gene expression data, based on Affymetrix microarray experiments, for 

human, and mouse are obtained from the mammalian gene expression atlas [17].  

These expression data were retrieved from the UCSC Genome Browser [39].  

Affymetrix probe identifiers (ids) were mapped to human and mouse genomic loci 

using UCSC Genome Browser and NCBI annotations as shown below: 
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Affymetrix probe id →→→→ GenBank accession →→→→ RefSeq accession →→→→ NCBI Locus id  

 

Only affymetrix probes that map to unique genomic loci were considered for further 

analysis.  When loci were found to be covered by multiple probes, the probe yielding 

the highest overall expression level was used in subsequent analyses. 

In order to directly compare gene coexpression networks of different species, a 

set of orthologous genes expressed over a set of common tissue samples was 

analyzed.  9,105 orthologous human-mouse genes pairs were identified, using 

reciprocal best BLASTP hits [40], along with 28 common tissues with expression data 

for both human and mouse.  For each gene, for each tissue, there were two replicate 

measurements.  The average of these two values was taken to produce a 9105×28 

matrix of real values.  This matrix was further normalized as follows.  For each gene, 

the median of the expression values of the gene across all tissues was computed and 

the entries of the corresponding matrix row were normalized with this value.  These 

values were then log2 normalized resulting in a set of values with median zero. 

 Vectors of normalized tissue-specific expression levels were compared using a 

number of different measures: Euclidean distance, Manhattan distance, Jensen-

Shannon entropy, dot-product, cosine similarity and Pearson correlation coefficient.  

Results reported in the body of the manuscript are for networks constructed using the 

Pearson correlation coefficient (PCC), and a discussion of results based on other 

measures is included in the Supplementary Information section (see Additional file 1). 

Network analysis 

All-against-all gene expression profile comparisons for the human and mouse 

matrices (9,105 × 28) were used to generate species-specific coexpression networks.  

Network nodes correspond to genes and gene pairs with PCC r≥0.7 were linked by 
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and edge.  Networks’ topological properties were analyzed using MATLAB®.  For 

each network the number of nodes and number of edges was simply counted.  The 

average degree <k> was calculated as the average number of connections per node.  

The average clustering coefficient <C> was calculated as the average clustering 

coefficient of all nodes with at least two neighbors using the formula: Ci=2ni/ki(ki-1), 

where ni is the number of observed links connecting the ki neighbors of node i and 

ki(ki-1)/2 is the total number of possible links.  The average path length (<l>) was 

calculated as the average shortest path, or the smallest number of edges needed to 

connect two nodes, between any two reachable nodes in the network.  Node degree 

distributions were plotted with the degree (k) on the x-axis and the number of nodes 

with this degree f(k) on the y-axis.  Clustering coefficient against node degree C(k) 

distributions were plotted with the degree (k) on the x-axis and the average clustering 

coefficient <C> for all nodes with degree k on the y-axis.  Species-specific networks 

were compared to derive a conserved intersection network containing only edges that 

connect the same orthologous genes (Figure 4a), and the network properties of the 

intersection network were calculated.  Controls for experimental variance were 

performed by constructing two replicate-specific networks for human and mouse 

respectively and then computing the species-specific replicate intersection networks.  

A normalized intersection network was calculated by comparing the two species-

specific replicate intersection networks.  A control for experimental and biological 

variance was conducted by comparing mouse expression data from Novartis [17] with 

and independently obtained mouse expression data set [41]. 

Functional analysis 

Network visualization and functional analysis was done using Cytoscape [42].  

Networks were partitioned into tightly linked clusters of genes using MCODE [43].  
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Genes in the networks were functionally categorized using their Gene Ontology (GO) 

biological process annotation terms [44].  Overrepresented GO terms were identified 

with BINGO [45] by comparing the relative frequencies of GO terms in specific 

clusters with the frequencies of randomly selected GO-terms.  The Hypergeometric 

test was used to do this with the Benjamini and Hochberg false discovery rate 

correction for multiple tests and a P-value threshold of 0.001.  Pairwise similarities 

between gene GO terms were measured using the semantic similarity method, which 

computes the relative distance between any two terms along the GO-graph [23]. 
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Figures 

Figure 1 - Gene coexpression networks 

a)  The expression profile of a gene i (Gi) can be represented as a row vector with 

dimensions (n) equal to the number of tissues (28); all profiles taken together yield an 

m × n gene expression matrix (X) where m=the number of genes (9,105), n=the 

number of tissues (28) and the expression value of Gi in tissue j is represented as xij 

[45].  b) Gene expression vectors can be compared using a number of different 

similarity (distance) measures such as the Pearson correlation coefficient (r).  Genes 

(nodes) are connected by an edge if their vectors are sufficiently similar (e.g. r≥0.7).  

A relatively tightly linked cluster (subgraph) of coexpressed genes is shown.  c) 

Visual representation of the expression patterns of the genes in this cluster 

underscores their similarity.  Color scale based on log2 (Gij/median Gi1…Gin). 

Figure 2 - Node degree (k) distributions for human and mouse gene 

coexpression networks 

All distributions are plotted in log10-log10 scale.  Frequency distributions showing f(k) 

× k for human (a) and mouse (b). 
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Figure 3 - Clustering coefficient against node degree C(k) distributions for 

human (a) and mouse (b) gene coexpression networks 

The degree (k) is shown on the x-axis and the average clustering coefficient <C> for 

all nodes with degree k is shown on the y-axis.  

Figure 4 - Human-mouse conserved intersection network 

a) Procedure for computing the intersection network whereby conserved edges that 

link the corresponding orthologous genes in both species are preserved.  b) Node 

degree (k) and c) clustering coefficient against node degree C(k) distributions for the 

intersection network.  

Figure 5 - GO similarity versus gene profile correlation matrix 

Genes are plotted along both axes of the matrices.  Genes were clustered according to 

the pairwise similarity between their GO biological process annotation terms for the 

a) human-specific coexpression network, b) mouse-specific coexpression network and 

c) the human-mouse conserved intersection network.  Pearson correlations (r) for all 

pairs of tissue-specific gene expression profiles are plotted according to the color bar.  

The inset of each plot shows a negative control where genes are randomly plotted, i.e. 

without regard to functional similarity, along the axes of the matrix.  

Figure 6 - GO biological process semantic similarity cumulative frequency 

distributions 

Distributions [Pr(X≤x)] of GO term similarities are shown for all human and mouse 

gene pairs, for pairs of genes linked in the species-specific coexpression networks and 

for pairs of genes linked in the conserved human-mouse intersection network. 
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Figure 7 - Clusters of tightly coexpressed and functionally coherent genes 

Examples of clusters involved in spermatogenesis (a) and host immune response (b) 

are shown along with their tissue-specific expression patterns. 
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Tables 

Table 1 - Global characteristics of the coexpression networks 

 

Network Nodes
1
 Edges

2
 <k>

3
 <C>

4
 <l>5

 

Human 7,208 158,418 43.96 0.3744 4.75 

Mouse 7,730 178,166 46.10 0.4003 4.80 

Intersection 2,257 13,060 11.57 0.4006 6.89 

 
1
Number of genes (nodes) in the network – i.e. nodes with one or more edges 

2
Number of coexpressed gene pairs (edges) in the network 

3
Average degree (k), number of edges shared with other nodes, per node 

4
Average clustering coefficient (C) per node 

5
Average shortest path length (l) between any two nodes in the network 

  

Table 2 - Local conservation of the human-mouse intersection network 

 

 Intersection
1
 % Human

2
  % HumanN

3
 % Mouse

2
 % MouseN

3
 

Nodes 2,257 31.31 63.20 29.20 41.51 

Edges 13,060 8.24 11.71 7.33 4.93 

 
1
Number of nodes and edges in the human-mouse intersection network 

2
Percentage of the nodes and edges conserved in the intersection network relative to 

the human and mouse networks 
3
Normalized percentage of the nodes and edges (see Additional file 1) conserved in 

the intersection network 

 

Table 3 - Average GO similarity for mammalian gene coexpression networks 
versus average GO similarity for all gene pairs 

 

Species netGOavg
1
 allGOavg

2
 t

3
 P

4
 

Human 0.2637±9.1e-4 0.1989±4.9e-5 80.78 0 

Mouse 0.2736±8.9e-4 0.2150±8.2e-5 75.23 0 

 
1
Average GO similarities for all pairs of genes connected by an edge in the 

coexpression network 
2
Average GO similarities all possible pairs among the 9,105 human-mouse orthologs 

3
Value of test statistic, t=(µ1-µ2)/(σd*sqrt(1/n1+1/n2)) where µ are the respective 

means and σd is the standard deviation of the difference 
4
Level of significance based on Students t-distribution with degrees of 

freedom=n1+n2-2 

 

Table 4 - Correlation (r) between pairwise GO similarity and pairwise gene 
expression profile r-values 
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Network r
1
 n

2
 t

3
 P

4
 

Human 0.1012 49303 22.59 2.2e-112 

Mouse 0.0974 57685 23.50 1.4e-121 

Intersection 0.1927 5370 14.39 4.4e-46 

 
1
Pearson correlation coefficient 

2
Number of gene pairs compared 

3
Value of test statistic, t=r*sqrt((n-2)/(1-r

2
)) 

4
Level of significance based on Students t-distribution with degrees of freedom=n-2 

 

Table 5 - Average GO similarity for species-specific mammalian gene 
coexpression networks versus average GO similarity for the conserved human-
mouse intersection network 

 

Network GOavg
1
 t

2
 P

3
 

Human-specific 0.2556±9.3e-4 25.65 3.3e-144 

Mouse-specific 0.2678±9.2e-4 20.31 2.2e-91 

Intersection 0.3299±3.4e-3 

 
1
Average GO similarities for all pairs of genes connected by an edge in the 

coexpression network 
2
Value of the test statistic for the comparison between the species-specific network 

and the intersection network, t=(µ1-µ2)/(σd*sqrt(1/n1+1/n2)) where µ are the 

respective means and σd is the standard deviation of the difference 
3
Level of significance, i.e., probability that the distributions of GO similarity values 

for the intersection and species-specific networks are identical, based on Students t-

distribution with degrees of freedom=n1+n2-2 

 

Table 6 - Correlation (r) between pairwise GO similarity and pairwise gene 
expression profile r-values 

 

Network r
1
 n

2
 z

3
 P

4
 

Human-specific 0.0581 43933 9.47 0 

Mouse-specific 0.0730 52315 8.51 0 

Intersection 0.1927 5370 

 
1
Pearson correlation coefficient 

2
Number of gene pairs compared 

3
Value of the test statistic for the comparison between the species-specific network 

and the intersection network, z=(zf1-zf2)/sqrt(1/(n1-3)+1/(n2-3)) where zf is the Fisher 

transform, zf=1/2*ln((1+r)/(1-r)) 
4
Level of significance, i.e., probability that the correlations in the intersection and 

species-specific networks are indistinguishable, based on normal distribution with 

infinite degrees of freedom  
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Additional files 
Additional file 1 – Supplementary Information 

Further information on i-coexpression distance measures, ii-global network 

characteristics and iii-node degree distributions. 
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